Steady-state crack growth in single crystals under Mode I loading
نویسندگان
چکیده
منابع مشابه
Finite Element Model of Crack Growth under Mixed Mode Loading
In this paper, in order to predict the crack growth trajectory and to evaluate the SIF under mixed modes (I & II), one proposes a new finite element program for crack growth using the source code written in FORTRAN. The fin ite element mesh is generated using an advancing front method, where the generation of the background mesh and the construction of singular elements are also added to this d...
متن کاملModeling and Simulation of Conducting Crack Propagation in Ferroelectric Single Crystals under Purely Electrical Loading
Abstract. We present a phase-field model of fracture in ferroelectric single crystals for the simulation of conducting crack propagation under purely electrical loading. This is done by introducing the electrical enthalpy of a diffuse conducting layer into the phase-field formulation. Simulation results show an oblique crack propagation and crack branching from a conducting notch in a ferroelec...
متن کاملModelling Mode I Crack Initiation in Composites under Fatigue Loading Using Interface Elements
Modelling quasi-static crack growth with interface elements is a widely accepted technique [1-2]. Interface elements are inserted into the finite element mesh along possible crack paths. The interface elements are characterised by a traction-displacement curve. When a specific maximum stress is reached, the interface element undergoes a softening process until the critical fracture energy has b...
متن کاملEffect of T-stress on Edge Dislocation Formation at a Crack Tip under Mode I Loading
We calculate the effect of the nonsingular stress acting parallel to a crack (the “Tstress”) on edge dislocation nucleation at a crack loaded in Mode I. We find that this leads to crack size effect – that is, for small cracks (of order 100 atomic spacings or less), the T stress causes the critical load for dislocation nucleation (expressed in terms of the applied stress intensity factor) to dev...
متن کاملThreshold stress intensity factor and crack growth rate prediction under mixed-mode loading
A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mechanics and Physics of Solids
سال: 2017
ISSN: 0022-5096
DOI: 10.1016/j.jmps.2017.01.012